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Abstract
We have measured the magnon Raman cross-sections for bismuth ferrite as a function of
temperature near the newly discovered magnetic phase transitions near T2 = 140.3 ± 0.2 K and
T1 = 201.0 ± 0.8 K (Singh et al 2008 J. Phys.: Condens. Matter 20 252203) and evaluate the
critical exponents (α = 0.05 and α′ = 0.09) characterizing that at 140.3 K and (α = 0.06 and
α′ = 0.13) that at 201.0 K. These are �1, and hence the data fit a logarithmic divergence about
as well. The occurrence of divergences in the electric susceptibility proportional to the specific
heat anomaly in non-ferroelectric transitions due to piezoelectric coupling was first reported by
Kizhaev et al (1986 JETP Lett. 43 445); in the present paper we apply an analogous theory to
magnetoelastic coupling at magnetic transitions. This is an application of the basic Pippard
relationship between susceptibilities and specific heat (Pippard 1956 Phil. Mag. 1 473) to a
magnetoelastic system. The observations are related to the mechanical loss anomalies observed
at the same temperatures (Redfern et al 2008 Preprint cond-mat). Our results support the
distorted spin cycloid model of Zalesskii et al (2003 Phys. Solid State 45 141) and not the
earlier model of Sosnowska et al (1982 J. Phys. C: Solid State Phys. 15 4835).

Recently we reported the discovery of two new magnetic
phase transitions near 140 and 200 K in bismuth ferrite [1].
We interpret these as spin-reorientation transitions. In close
analogy with the well-known orthoferrites (e.g., ErFeO3) these
transitions come in pairs; as temperature is cooled, the spins
rotate out of a plane at the upper transition temperature T2 and
become orthogonal to the plane at the lower transition T1 [2].
In ErFeO3 these transitions are at 90 and 103 K; in BiFeO3, at
140 and 200 K. In each case the magnon frequency decreases
somewhat (50% in ErFeO3; 5% in BiFeO3). The decrease
would be 100% to zero frequency if there were no coupling of
magnons to strain; but in BiFeO3 this is particularly large, as
shown by the sharp increase in mechanical loss tangent at both
transition temperatures [3]. Note that the antiferromagnetic
Neel temperature TN is at much higher temperatures (633 K
in ErFeO3 and 643 K in BiFeO3) and hence plays no direct
role in the cryogenic phenomena. As the 200 K transition
is approached from above, however, frustration among the
ordering spins leads to a spin-glass behaviour [4] with an
extrapolated freezing temperature of 29.4 K and a cusp in
the zero-field-cooled susceptibility at 53 K. Such a spin-glass

is unusual and perhaps unique because the system remains
acentric in its glassy phase. Fischer and Hertz have
emphasized [5] that no published theories are expected to apply
to acentric spin-glasses and that such non-centrosymmetric
spin-glasses cannot be Ising-like; indeed the critical exponent
zν describing the spin-glass is experimentally found [4] to be
1.4–1.5, rather than the values 7–9 typical of Ising systems.
This value is close to that of 2.0 originally calculated for a
mean-field spin-glass by Kirkpatrick and Sherrington [6], but
they did not expect [7] that Nature would actually provide
a mean-field spin-glass. In the case of BiFeO3 the strong
coupling of spins to elastic strain may do just that [3], since
strain is always unscreened and hence long-range.

At Neel transitions in uniaxial antiferromagnets, Schulhof
et al have shown [8] that one should see divergences in
the magnon cross-sections for light scattering or neutron
scattering, concomitant with linewidth narrowing. The
narrowing is ‘critical slowing down’ and reflects the fact that
very near the transition temperatures the spin fluctuations
become larger in size (coherent length increases with critical
exponent ν) and slower in time. Experimentally for MnF2
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they found that the correlation length exponent ν = 0.63, and
that the susceptibility exponent γ for longitudinal response
was 1.3 whereas that for transverse response, 1.5. The value
1.3 agrees very well with the theoretical 4/3 for a uniaxial
antiferromagnet [9]. Their work develops further the earlier
theory by Fleury and Loudon [10] that did not assess the role
of fluctuations. Similar linewidth narrowing at 140 and 200 K
in BiFeO3 has been observed independently by Cazayous
et al [11] and by Singh et al [1], and is typically lowering
from 3.90 to 1.95 cm−1 near T1 or T2, with the latter value
instrumentally resolution-limited. These values are similar to
those [8] in MnF2 near TN = 67 K, where Schulhof et al
find neutron scattering magnon linewidths (dependent upon
momentum transfer q) of order 0.1 meV (0.8 cm−1), compared
with 1.0 meV (8 cm−1) 4.1 K away from TN.

We emphasize that the intensity divergences for the
magnons in the Raman effect at low temperatures need
not relate to the susceptibility exponent γ in the case of
BiFeO3. The reason is that the magnons are thought to be
electromagnons, by virtue of the fact that there is strong and
probably linear coupling between the ferroelectric polarization
and the magnetic spins, at least locally [12], and the low-T
transitions are very far from the Neel temperature (643 K).

Let us explain the absence of the critical exponent γ

in a simple way: if the phase transition in question were
ferroelectric, the order parameter would be polarization P
and the exponent involved would be γ = 1, the exponent
for the isothermal susceptibility. If it were ferromagnetic or
antiferromagnetic, the order parameter would be M or M
(sublattice), and the exponent would also be γ , which is ca
4/3 for an Ising model. However, we interpret the transition(s)
as spin reorientation (coupled magnetoelastically to strain). In
this case the exponent is not γ and cannot be ca 1; instead,
the strain coupling allows us to invoke the 1956 Pippard
relationship (Pippard–Janovec–Garland [13–16]), which says
that specific heat scales as elastic strain, and both scale as the
exponent α (not γ ). α is ca 0.1 in most statistical mechanics
models. We cite the work of Kizhaev et al [13] because in
1986 they pointed out that there are indeed dielectric anomalies
at non-ferroelectric phase transitions, but since P is not the
order parameter (strain is), the divergence goes as exponent α

and not γ . Simply put, since the Neel temperature T (N) =
643 K is hundreds of degrees above the phenomena we see,
the dynamics do not involve γ ; if all this happened at T (N), γ

would be the key exponent.
In the present case another clue is that the magnon Raman

intensity is very strong—much greater than in, for example,
MnF2. This surprisingly strong magnon Raman intensity may
come almost entirely from phonon coupling, and Adem and
Mostovoy [33] have shown that in such a case the cross-section
diverges not as (T0 − T )−γ but as (T0 − T )−α, where α is the
critical exponent characterizing specific heat divergence. Such
an argument can also be made by applying the early results
of Kizhaev et al to dielectric anomalies at non-ferroelectric
phase transitions [13]. These authors argued that the electric
susceptibility would couple to strain and result in a divergence
that varies as that of the specific heat, which is an exponent
usually labelled α. In the present case the coupling is not
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Figure 1. Magnon Raman cross-sections versus temperature above
and below the lower spin-reorientation temperature T2. The solid
curve is a fit to a power law: I (T ) = I (0)[T2/(T2 − T )]α′

below and
I (T ) = I (0)[T2/(T − T2)]α where I (0) is the magnon intensity at
T = 0. The least squares values are T2 = 140.3 ± 0.3 K,
α = 0.05 ± 0.01 and α′ = 0.09 ± 0.01.

piezoelectric between electric susceptibility and strain, but is
magnetoelastic, between magnetic susceptibility and strain.
That is, these two transitions are ‘magnetoelastic transitions’
and the main order parameter may be strain. But the result is
the same as with Kizhaev’s model:

∂�χm/∂T = −(�C/TC)∂2TC/∂ H 2 (1)

where �χm and �C are the most singular parts of the magnetic
susceptibility and specific heat; TC, the non-ferroelectric
transition temperature; and H , magnetic field. The fact that
specific heat C diverges as the elastic coefficients do at a
phase transition is often known as the Pippard relationship [14]
and was developed further by Garland [15] and Janovec [16].
(Note that [13] incorrectly attributed their large fitted values
of α in KMnF3 to dimensionality, but it was later shown by
Scott [17] to be due to defects.) The similarity of the present
work to that of Kizhaev et al is that they showed that the
electric susceptibility diverges with exponent α when the order
parameter for the structural transition is not polarization; we
show that the magnetic response scales as α at a magnetic
transition when the order parameter is not the magnetization
(i.e., not a Neel or Curie temperature).

The fits to experimental data are shown in figure 1 for the
transition near 140 K and in figure 2 for that near 200 K. Since
the theory makes predictions for only integrated cross-sections,
we intentionally ran the data with relatively wide slit widths,
giving a spectral resolution of a 3–4 cm−1. This integrates
out the linewidth narrowing [18], which was observed [11, 1]
to decrease from 3.9 cm−1 to <2.0 cm−1 as the transition
temperatures were approached. Data above and below T0

were not forced to fit the same T0 but were empirically found
to be equal; this is equivalent to requiring a second-order
transition. Data were taken only every 1.0 K. This is not
generally sufficient for precise evaluation of critical exponents;
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Figure 2. Magnon Raman cross-sections versus temperature above
and below the upper spin-reorientation temperature T1. The least
squares values are T1 = 201.0 ± 0.8 K, and α = 0.06 ± 0.003, and
α′ = 0.13 ± 0.004.

however, the data were taken with a focussed laser beam on an
opaque sample. Under these conditions absolute temperature
is accurate to only ca ±1 K, and relative temperature to only
a few tenths of a degree. Additional, more precise studies are
warranted. However, the present results, fitted to a power law

I (T ) = I (0)[T2/(T − T2)]α, (2)

where I (0) is the magnon intensity at T = 0, give least
squares values of T2 = 140.3 ± 0.2 K; α = 0.05 ± 0.01; and
α′ = 0.09 ± 0.01. Since the absolute value of these exponents
are both �1, and it is known that power laws for exponents �1
closely approximate logarithmic divergences, we then refitted
the data to a logarithmic divergence:

I (T ) = A + B log[T2/(T2 − T )]. (3)

This also worked both above and below T2, with the same fitted
value of T2 = 140.3 K. In figures 1 and 2 a dashed line is given
fitting equation (3) and a solid line to equation (2); however, the
fits are so close that it is not easy to distinguish the difference.
For the 140 K transition the coefficient B was 24 counts s−1.

The fits to the intensity data near T1 = 200 K are shown
in figure 2. Independently fitting data below and above 200 K
yielded for T < T1: T1 = 201.8±0.8 K and α′ = 0.14±0.01;
for T > T1, T1 = 200.2 ± 0.8 K and α = 0.7 ± 0.1. If we then
constrained T1 to be the same value for data above and below,
we obtained T1 = 201.0 ± 0.8 K, α′ = 0.13 ± 0.004 and
α = 0.06 ± 0.003. We do not regard these numerical values
as sufficiently reliable to infer relationships to models (Ising
or Heisenberg in different dimensions), particularly because of
the temperature dependent background in the data, but they are
probably adequate to infer that the exponents are small (ca 0.1)
and perhaps smaller above the transitions than below.

Parenthetically we note that the linear magnetoelectric
effect (spin-flop in an applied electric field) recently reported
by Lebeugle et al [12] is symmetry forbidden, assuming that

Figure 3. Magnon Raman intensities for all polarization
components, showing evidence for two additional magnetic
transitions near 90 and 250 K. The peak at 273 K is an artefact due to
moisture freezing in the cryostat.

the generally accepted cycloidal structure is correct (α12 is
nonzero locally but its effect spatially averages to zero). It is
clear that many experiments, such as these studies of spin-flop
induced by electric field, need to be redone in the other three
magnetic phases. In particular, one needs to determine the
magnetic space groups below 140 K, between 140 and 200 K,
and between 358 and 643 K = TN.

There have been many recent studies of magnetism in
bismuth ferrite and some evidence for spin-glass behaviour
below ca 200 K [19–24] prior to our recent work [4]; and the
modulated spin structure at low temperatures in bismuth ferrite
has been reexamined. A number of papers from Russia have
not been cited often [25–28] but provide useful information
on the temperature evolution of the cycloid structure and
sometimes disagree with the generally accepted 1982 model of
Sosnowska. The 2006 paper by Sosnowska’s group reconsiders
whether there are changes in the cycloid spin arrangements at
low temperatures [29], and if the ‘Zalesskii model’ is correct;
however, although their conclusions show that the cycloid
ordering at room temperature does indeed become distorted
at 4 K, in accord with Zalesskii’s model, it does not indicate
where the phase transition occurs, and these subtleties remain
suitable for more refined studies in order to reconcile x-ray,
neutron, and magnetic resonance data. The present results
show clearly that although Sosnowska’s basic cycloid [30]
may remain throughout the cryogenic range, her exact model
cannot possibly give all four observed magnetic phases and is
therefore correct for, at most, one. Qualitatively we clearly
support the Zalesskii model. The situation becomes even
more complicated when all polarizations are monitored. In
this case (figure 3), one finds another pair of low-temperature
magnetic transitions, near 90 and 240 K. Cazayous have
reported [31] that the two pairs of transitions may be related
to two different sets of magnons in the incommensurate model
of de Sousa [32]. We discuss this in a separate paper. For the
present we note only that the cross-section divergence at each
transition appears similar.

3



J. Phys.: Condens. Matter 20 (2008) 322203 Fast Track Communication

The basic observation that the magnon Raman intensity
divergence is characterized by a very small exponent (0.05–
0.06 above and 0.09–0.12 below) is a complete surprise,
without precedent or predictions. We explain this by invoking
the Pippard relationship for magnetoelastic phenomena near
phase transitions, in analogy with the model of Kizhaev et al
for dielectric coupling to strain at non-ferroelectric transitions.
Although it is well known that both α and α′ are zero
(logarithmic) in the (2D) Ising model and very small (0.125) in
the (3D) Ising model, this appears to be coincidental, since as
discussed above, acentric spin-glasses such as BiFeO3 cannot
be Ising-like [5].

We thank H J Fan and G Catalan for numerical data fitting,
M Cazayous for discussions, and the EU STREP ‘Multiceral’
for financial support.
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